2013: Стабильность — признак мастерства

2013-temporal-solitons.jpg

Ученые МГУ вместе с коллегами из Швейцарии совершили прорыв в создании компактных, устойчиво работающих оптических устройств для генерации стабильных сверхкоротких импульсов лазерного излучения.

Развитие электроники и средств коммуникаций требует от приборной базы все большей точности, эргономичности и пропускной способности. Так, для спутников связи и GPS-навигации весьма важно снижение массы полезного оборудования и снижение помех, а также обеспечение стабильности сигнала. В прошлом году ученым МГУ совместно с коллегами из Швейцарской высшей технической школы Лозанны удалось провести работу, способную послужить этим целям. Тогда исследователям удалось показать (статья была опубликована в Nature Photonics, 6, 480-487 (2012)), что причина, по которой в оптических «гребенках» (широкий спектр из большого числа равноудаленных узких линий) возникают шумы, кроется в нелинейных процессах генерации, а не в термодинамических шумах. Тогда впервые было показано, что помехи не вызваны какими-то фундаментальными ограничениями и с ними можно бороться. 

22 декабря 2013 года в журнале Nature Photonics вышла новая публикация, где ученые развивают и расширяют свой успех. По словам одного из авторов работы, профессора физического факультета МГУ и сотрудника Российского квантового центра в Сколково Михаила Городецкого, в исследовании, фактически, получены сразу три важных результата: учеными разработан метод генерации стабильных фемтосекундных (порядка 10-15 сек) импульсов, оптических «гребенок» и СВЧ частот. 

Ученым с помощью микрорезонатора (в данном случае — миллиметровый диск из кристалла фторида магния, в котором можно возбуждать закольцованные, т.е. движущиеся по замкнутой траектории, электромагнитные колебания) удалось превратить непрерывное излучение лазера в периодические сверхкороткие импульсы. Известными устройствами, работающими в таком режиме, являются фемтосекундные лазеры, у которых с огромной частотой генерируются короткие, длительностью сравнимой с 10-15 секунд, импульсы высокой мощности. Без них немыслимы современные спектроскопические методы исследования вещества и телекоммуникации, и даже современная офтальмология, в которой фемтолазеры используются для проведения операций на глазах. 

«В лазерах с синхронизацией мод для генерации импульсов используются сложные оптические устройства, среды и специальные зеркала. Мы же смогли получить такие стабильные импульсы в простом пассивном резонаторе, используя только собственную нелинейность кристалла», — говорит Городецкий. Это позволяет в перспективе резко уменьшить объем всего устройства. Генерируемые в микрорезонаторе короткие импульсы представляют собой так называемые оптические солитоны (солитон — это устойчивая частицеподобная волна, распространяющаяся в нелинейной среде; пример солитона в природе — цунами). «Мы можем генерировать одиночный стабильный солитон, который бежит внутри микрорезонатора по кругу. При этом в выходном оптоволокне получаются импульсы следующие друг за другом через время одного оборота», — рассказывает Городецкий. 

Длительность подобных импульсов 100–200 фемтосекунд, но авторы уверены, что реально достичь значительно более коротких солитонов. Они полагают, что их новация открывает возможность создания компактных, стабильных и дешевых генераторов коротких оптических импульсов в режимах, не достижимых другими методами. Такие импульсы на спектральном языке представляют собой так называемые оптические «гребенки», которые произвели революцию в метрологии и спектроскопии и были удостоены Нобелевской премии 2005 года (ее получили американец Джон Холл и немец Теодор Хэнш «за вклад в развитие лазерной прецизионной спектроскопии, включая технику оптических гребенок»). Существующие генераторы гребенок имеют значительно большие размеры. 

Одновременно, как показали исследователи, электрический сигнал от такой гребенки представляет собой очень чистый СВЧ-сигнал с низким уровнем шумов. Сверхмалошумящие компактные СВЧ-генераторы имеют огромную роль в современных технологиях; они используются в метрологии, радиолокации, телекоммуникационном оборудовании, в том числе на спутниках. Авторы работы отмечают, что их результаты критичны для развития таких направлений, как широкополосная спектроскопия, телекоммуникации, радиолокация и астрономия.

к.х.н. Иван Охапкин, 
Управление инновационной политики и международных научных связей МГУ 
(по материалам сайта www.msu.ru).