EN


Я убеждён, что ядерная энергетика
необходима человечеству и должна развиваться,
но только в условиях практически полной безопасности.
Академик А.Д. Сахаров

Масштабы строительства, прогнозы развития атомных электростанций (АЭС), теплоэлектроцентралей (АТЭЦ) и станций теплоснабжения (АСТ) во многих странах свидетельствуют о возрастающей, а для некоторых стран решающей роли ядерной энергетики в электроснабжении и выработке тепла среднего и низкого потенциала для промышленного и коммунально-бытового теплоснабжения.
Россия – одна из немногих стран, где серьёзно рассматриваются варианты строительства атомных станций теплоснабжения. Объясняется это тем, что в России существует централизованная система водяного отопления зданий, при наличии которой целесообразно применять атомные станции для получения не только электрической, но и тепловой энергии. Первые проекты таких станций были разработаны ещё в 1970-е г., однако из-за наступивших в конце 80-х гг. экономических потрясений и жёсткого противодействия общественности, до конца ни один из них реализован не был.
По данным МАГАТЭ по состоянию на 2009 год в мире действовало 437 энергетических ядерных реактора, генерирующих почти 16 процентов мировой электроэнергии. Нынешнее положение дел в области выработки электроэнергии на АЭС в разных странах мира крайне неодинаково. В 30 странах, имеющих действующие АЭС, процентная доля электроэнергии, обеспечиваемой ядерными реакторами, варьируется в диапазоне от 78% во Франции, 58% в Бельгии, 44% – в Швеции, 31% – в Германии, до всего лишь 2 % в Китае. Однако уже сейчас в Китае ведется строительство шести реакторов и планируется почти пятикратное увеличение мощностей к 2020 г.


Рис.1. Рост мощности АЭС и производства электроэнергии за 1971-2006 гг. (по данным МАГАТЭ).  


Рис.2. Прогнозы мощности АЭС в Мире на 2020-2030 гг. (по данным МАГАТЭ). 

  
На рис.1 приведён график роста мощности АЭС в мире и производства электроэнергии за 1971-2006 гг.,а на рис.2 – прогнозы развития на 2020-30 гг. Помимо упомянутых выше, несколько развивающихся стран, таких, как Индонезия, Египет, Иордания и Вьетнам, заявили о возможности создания АЭС и сделали первые шаги в этом направлении. Исторически сложилось так, что в общественном сознании сформировалось неадекватное восприятие техногенных рисков различной природы. Так, например, существует устойчивый стереотип, согласно которому основными источниками поступления естественных радионуклидов (ЕРН) на поверхность Земли считаются урановые рудники и атомный энергетический комплекс с его ядерными реакторами.
Радиационный фактор является барьером в общественном сознании для атомной энергетики при выборе вида энергоисточника. Однако более детальное знакомство с проблемой свидетельствует о том, что атомная энергетика в современном мире дает всего лишь не более 0.1% от всей дозы облучения людей на Земле.
Выбросы АЭС на 99.9% состоят из инертных радиоактивных газов (ИРГ). В процессе деления образуется около 20 радиоизотопов криптона и ксенона, из которых основной вклад в ИРГ вносят изотопы криптона 88Kr (период полураспада 2.8 ч) и ксенона 133Хе (5.3 сут), 135Хе (9.2 ч) дающие различный вклад, в зависимости от типа реактора. На долю всех оставшихся радионуклидов (в основном это 131I, 60Co, 134Cs, 137Cs и тритий 3H) приходится менее одного процента. Еще в меньшем количестве наблюдаются выбросы небольшого количества продуктов коррозии реактора и первого контура и осколков деления ядер урана 51Cr, 54Mg, 95Nb, 106Ru, 144Ce. Для Российских АЭС в среднем в численном выражении это составляет на 1 ГВт.ч выработанной электроэнергии 5?1012 Бк для ИРГ, и 4?107 Бк для суммы всех остальных радионуклидов.
Большинство радионуклидов газоаэрозольных выбросов, включая ИРГ, имеют довольно небольшой период полураспада и без ущерба для окружающей среды распадаются, не успевая поступить в атмосферу. Тем не менее, для обеспечения безопасности по отношению к этим радионуклидам на АЭС, как правило, предусмотрена специальная система задержки газообразных выбросов в атмосферу.

 
 

На порядок больше дают вклад в радиоактивное облучение выбросы ТЭС и ТЭЦ, работающие на органическом топливе – угле, сланце, нефти, которые, наряду с другими энергетическими предприятиями, работающими на этом же топливе, являются самым мощным источником поступления радионуклидов (РН), и в частности радона, в атмосферу.
Уголь, подобно нефти и газу, представляет собой органическое вещество, подвергшееся медленному разложению под действием биологических и геологических процессов. Вместе с тем, уголь всегда содержит природные радиоактивные вещества уранового и актиноуранового рядов (238U и продукты его распада 234U, 226Ra, 222Rn, 210Pb, 210Po и т.д.; 235U и продукты его распада 219Rn и т.д.), ториевого ряда (232Th и продукты его распада 220Rn, 216Po), а также долгоживущий радиоактивный изотоп 40K. Таким образом, естественная радиоактивность угля формируется за счет природных радионуклидов.

  
Рис.3. Средние значения удельной активности основных радионуклидов: a) в углях различных месторождений: 1– среднемировые концентрации; 2 – Интинское; 3 – Воркутинское; 4 – Кузнецкое; 5 – Хакасское; 6 – Райчихинское; 7 – Нерюнгринское; 8 – Ургальское; 9 – Харанорское; 10 – Чегдомынское; 11 – Лучегорское; b) в угле Интинского месторождения и продуктах его сжигания.

В продуктах сгорания происходит концентрирование микроэлементов, в том числе и радионуклидов. Степень концентрирования зависит от многих факторов, в число которых входит первоначальная концентрация радионуклидов в угле, зольность, способ сжигания и условия работы электростанции. Коэффициенты обогащения могут существенно различаться. Особенно интенсивно за счет термохимических процессов накапливается в золе изотоп 210Pb, так что его концентрация увеличивается в 5-10 раз.
В отличие от электростанций, работающих на угле, организация эксплуатации ядерного топлива на АЭС обеспечивает в настоящее время достаточно высокий уровень безопасности, начиная с отправки ядерного топлива и заканчивая хранением. Сжигание ядерного топлива происходит без участия окислителей, поэтому не вызывает нарушений биогеохимических циклов кислорода, углекислого газа, серы и азота.
При нормальной эксплуатации влияние АЭС на радиоактивное загрязнение воздуха является весьма малым по сравнению с естественной радиоактивностью атмосферы и не наносит заметного ущерба прилегающим территориям и наземным экосистемам, т.к. используемые на АЭС технические меры позволяют обеспечить весьма высокие коэффициенты удержания радионуклидов в реакторе. Существует ряд защитных барьеров, препятствующих выходу радионуклидов, в частности, упоминавшаяся выше задержка газов перед выбросом в трубу, в течение которой происходит распад короткоживущих радионуклидов.
В среднем для функционирующих в настоящее время ТЭС и АЭС разница в уровнях радиоактивного загрязнения долгоживущими радионуклидами составляет несколько порядков. Следует также иметь в виду, что продукты сгорания угля в виде золы и шлаков образуют значительное количество трудно утилизируемых отходов, поэтому, как правило, не утилизируются, и являются дополнительными источниками радиоактивного загрязнения окружающей среды.

Несмотря на то, что дымовые газы ТЭС, как правило, очищаются в золоуловителях с коэффициентом полезного действия 94-99 %, ядерная энергетика оказывается пока существенно чище традиционной теплоэнергетики и по химическим показателям. Помимо долгоживущих радионуклидов опасными компонентами дымовых газов ТЭС являются твердые частицы, диоксид серы, окислы азота и углекислый газ. Кроме того, в дымовых газах содержатся ароматические углеводороды канцерогенного воздействия, пары соляной и плавиковой кислот, токсичные металлы. Сравнительная оценка концентрации некоторых химических выбросов от ТЭС и АЭС на 1 ГВт.ч выработанной энергии приведены в таблице.
Как показали проводившиеся по заказу Еврокомиссии исследования, мелкодисперсная угольная пыль ежегодно приводит к смерти около 300 тыс. европейцев. В России дополнительная смертность от проживания вблизи угольных ТЭС оценивается в 8-10 тыс. человек в год. В то же время, имеющиеся в разных странах данные свидетельствуют, что по реальному воздействию на человека атомная промышленность находится во втором десятке вредных факторов. На первом месте по показателям профзаболеваний находится угольная промышленность (20-50 заболеваний против 0.4-0.7 в атомной промышленности на 10000 работающих).
К этому следует добавить и проблему количества необходимого топлива. Так для обеспечения работы в течение года ТЭС на угле мощностью 2 ГВт за год требуется 6 млн. т угля (примерно 150 000 вагонов), потребление кислорода составляет около 1010 м3/год, накапливается около 1.4 млн. т (800 тыс. м3) твердых отходов за год. Для АЭС аналогичной мощности требуется топлива примерно 2 вагона в год, кислород не потребляется, отработанное ядерное топливо (ОЯТ) составляет 40-50 т (около 5 м3) в год.
Громадное количество твердых отходов ТЭС не имеет никакой энергетической ценности, а изготовленное новое топливо из 50 т ОЯТ позволяет заместить 2 млн. т угля, или 1.6 млрд. м3 газа, или 1.2 млн. т нефти.
Мировая статистика показывает, что добыча этих 6 млн. т угля обойдется в 24 человеческие жизни и 90 травм шахтеров.
Ядерная энергетика положительно решает многие экологические проблемы, не потребляет ценного природного сырья и атмосферного кислорода, не выбрасывает в атмосферу парниковых газов и ядовитых веществ, и стабильно обеспечивает получение самой дешевой энергии. Замещая тепловую энергетику, атомная энергетика может сыграть существенную роль в сокращении выбросов углекислого газа, разрешении других экологических проблем.
Однако следует отметить, что только при нормальной эксплуатации АЭС, они в экологическом отношении чище тепловых электростанций на угле. При авариях АЭС могут оказывать существенное радиационное воздействие на людей и экосистемы.

Материал подготовлен В.А.Гордиенко по совместным публикациям авторов:
В.А. Гордиенко (физфак МГУ), С.Н. Брыкин,
И.С. Серебряков, М.В. Старкова (ФГУП «РосРАО»)
и Р.Е. Кузин (ОАО ВНИИХТ).

Некоторые использованные источники:
1. The United Nations Today. – United Nations. New York. 2008.
2. Макдональд А. Ядерная энергетика: положение дел в мире. Взгляд на производство электроэнергии на АЭС во всем мире и его будущие перспективы. Бюлл. МАГАТЭ 49-2. Март, 2008. С. 45.
3. Крышев И.И., Рязанцев Е.П. Экологическая безопасность ядерно-энергетического комплекса России. М.: ИздАТ. 2010.
4. Мауричева Т.С. Количественная оценка поступления радионуклидов в окружающую среду при работе угольных ТЭЦ (на примере ТЭЦ-1 г. Северодвинска). Автореф. дис. канд. геол.-мин. наук. M. 2007.
5. http://www.rosenergoatom.ru.– Годовой отчет за 2010 год ОАО «Концерн Росэнергоатом».

Назад