Написать программу для нахождения всех корней полинома

$$p(x) = \sum_{n=0}^{14} c_n x^n$$

методом Лягерра. Коэффициенты c_n заданы во входном файле $ct191v1.dat^1$ в порядке $c_0, c_1, \ldots c_{14}$. Метод Лягерра² состоит в следующем:

- Возьмите начальное приближение к корню a = 0.
- Найдите 1-ю и 2-ю логарифмические производные³: $L_1=p'(a)/p(a)$ и $L_2=p''(a)/p(a)-\left[p'(a)/p(a)\right]^2$ полинома p(x) в точке a.
- Найдите новое приближение к корню $a' = a \Delta a$, где

$$\Delta a = \frac{N}{L_1 + (L_1/|L_1|)\sqrt{(N-1)|NL_2 + L_1^2|}},$$

здесь N — степень полинома.

• Повторите все те же действия для нового приближения a = a'.

Итерация обрывается, если: либо p(a) = 0, либо $|\Delta a| < 10^{-13}$, либо точность 10^{-13} не достигнута после 30 оборотов.

Чтобы найти второй корень, выполняется деление полинома на (x-a): $p_1(x)=p(x)/(x-a)$ и тем же самым способом ищется корень полученного полинома 13-й степени $p_1(x)$. И так далее, пока не будут найдены все 14 корней.

 $^{^{1}}$ Входные данные должны быть зачитаны из входного файла, а не быть куском программы.

 $^{^{2}}$ Вообще-то его целесообразно применять для отыскания **комплексных** корней полиномов.

³Перед тем, как на что-то делить, убедитесь, что это не ноль.

Написать программу для нахождения всех корней полинома

$$p(x) = \sum_{n=0}^{14} c_n x^n$$

методом Лягерра. Коэффициенты c_n заданы во входном файле $ct191v2.dat^4$ в порядке $c_0, c_1, \ldots c_{14}$. Метод Лягерра⁵ состоит в следующем:

- Возьмите начальное приближение к корню a = 0.
- Найдите 1-ю и 2-ю логарифмические производные⁶: $L_1=p'(a)/p(a)$ и $L_2=p''(a)/p(a)-\left[p'(a)/p(a)\right]^2$ полинома p(x) в точке a.
- Найдите новое приближение к корню $a' = a \Delta a$, где

$$\Delta a = \frac{N}{L_1 + (L_1/|L_1|)\sqrt{(N-1)|NL_2 + L_1^2|}},$$

здесь N — степень полинома.

• Повторите все те же действия для нового приближения a = a'.

Итерация обрывается, если: либо p(a)=0, либо $|\Delta a|<10^{-13}$, либо точность 10^{-13} не достигнута после 30 оборотов.

Чтобы найти второй корень, выполняется деление полинома на (x-a): $p_1(x) = p(x)/(x-a)$ и тем же самым способом ищется корень полученного полинома 13-й степени $p_1(x)$. И так далее, пока не будут найдены все 14 корней.

 $^{^4}$ Входные данные должны быть зачитаны из входного файла, а не быть куском программы.

 $^{^{5}}$ Вообще-то его целесообразно применять для отыскания **комплексных** корней полиномов.

 $^{^{6}}$ Перед тем, как на что-то делить, убедитесь, что это не ноль.

Написать программу для нахождения всех корней полинома

$$p(x) = \sum_{n=0}^{14} c_n x^n$$

методом Лягерра. Коэффициенты c_n заданы во входном файле $ct191v3.dat^7$ в порядке $c_0, c_1, \ldots c_{14}$. Метод Лягерра⁸ состоит в следующем:

- Возьмите начальное приближение к корню a = 0.
- Найдите 1-ю и 2-ю логарифмические производные⁹: $L_1=p'(a)/p(a)$ и $L_2=p''(a)/p(a)-\left[p'(a)/p(a)\right]^2$ полинома p(x) в точке a.
- Найдите новое приближение к корню $a' = a \Delta a$, где

$$\Delta a = \frac{N}{L_1 + (L_1/|L_1|)\sqrt{(N-1)|NL_2 + L_1^2|}},$$

здесь N — степень полинома.

• Повторите все те же действия для нового приближения a = a'.

Итерация обрывается, если: либо p(a)=0, либо $|\Delta a|<10^{-13}$, либо точность 10^{-13} не достигнута после 30 оборотов.

Чтобы найти второй корень, выполняется деление полинома на (x-a): $p_1(x) = p(x)/(x-a)$ и тем же самым способом ищется корень полученного полинома 13-й степени $p_1(x)$. И так далее, пока не будут найдены все 14 корней.

⁷Входные данные должны быть зачитаны из входного файла, а не быть куском программы.

 $^{^{8}}$ Вообще-то его целесообразно применять для отыскания **комплексных** корней полиномов.

⁹Перед тем, как на что-то делить, убедитесь, что это не ноль.

Написать программу для нахождения всех корней полинома

$$p(x) = \sum_{n=0}^{14} c_n x^n$$

методом Лягерра. Коэффициенты c_n заданы во входном файле $ct191v4.dat^{10}$ в порядке $c_0, c_1, \dots c_{14}$. Метод Лягерра¹¹ состоит в следующем:

- Возьмите начальное приближение к корню a = 0.
- Найдите 1-ю и 2-ю логарифмические производные 12 : $L_1=p'(a)/p(a)$ и $L_2=p''(a)/p(a)-\left[p'(a)/p(a)\right]^2$ полинома p(x) в точке a.
- Найдите новое приближение к корню $a' = a \Delta a$, где

$$\Delta a = \frac{N}{L_1 + (L_1/|L_1|)\sqrt{(N-1)|NL_2 + L_1^2|}},$$

здесь N — степень полинома.

• Повторите все те же действия для нового приближения a = a'.

Итерация обрывается, если: либо p(a) = 0, либо $|\Delta a| < 10^{-13}$, либо точность 10^{-13} не достигнута после 30 оборотов.

Чтобы найти второй корень, выполняется деление полинома на (x-a): $p_1(x)=p(x)/(x-a)$ и тем же самым способом ищется корень полученного полинома 13-й степени $p_1(x)$. И так далее, пока не будут найдены все 14 корней.

 $^{^{10}{}m Bx}$ одные данные должны быть зачитаны из входного файла, а не быть куском программы.

 $^{^{11}}$ Вообще-то его целесообразно применять для отыскания **комплексных** корней полиномов.

 $^{^{12}}$ Перед тем, как на что-то делить, убедитесь, что это не ноль.

Написать программу для нахождения всех корней полинома

$$p(x) = \sum_{n=0}^{14} c_n x^n$$

методом Лягерра. Коэффициенты c_n заданы во входном файле $ct191v5.dat^{13}$ в порядке $c_0, c_1, \dots c_{14}$. Метод Лягерра¹⁴ состоит в следующем:

- Возьмите начальное приближение к корню a = 0.
- Найдите 1-ю и 2-ю логарифмические производные¹⁵: $L_1 = p'(a)/p(a)$ и $L_2 = p''(a)/p(a) \left[p'(a)/p(a)\right]^2$ полинома p(x) в точке a.
- Найдите новое приближение к корню $a' = a \Delta a$, где

$$\Delta a = \frac{N}{L_1 + (L_1/|L_1|)\sqrt{(N-1)|NL_2 + L_1^2|}},$$

здесь N — степень полинома.

• Повторите все те же действия для нового приближения a = a'.

Итерация обрывается, если: либо p(a)=0, либо $|\Delta a|<10^{-13}$, либо точность 10^{-13} не достигнута после 30 оборотов.

Чтобы найти второй корень, выполняется деление полинома на (x-a): $p_1(x) = p(x)/(x-a)$ и тем же самым способом ищется корень полученного полинома 13-й степени $p_1(x)$. И так далее, пока не будут найдены все 14 корней.

¹³Входные данные должны быть зачитаны из входного файла, а не быть куском программы.

 $^{^{14} \}mbox{Вообще-то}$ его целесообразно применять для отыскания **комплексных** корней полиномов.

 $^{^{15}}$ Перед тем, как на что-то делить, убедитесь, что это не ноль.

Написать программу для нахождения всех корней полинома

$$p(x) = \sum_{n=0}^{14} c_n x^n$$

методом Лягерра. Коэффициенты c_n заданы во входном файле $ct191v6.dat^{16}$ в порядке $c_0, c_1, \dots c_{14}$. Метод Лягерра¹⁷ состоит в следующем:

- Возьмите начальное приближение к корню a = 0.
- Найдите 1-ю и 2-ю логарифмические производные¹⁸: $L_1 = p'(a)/p(a)$ и $L_2 = p''(a)/p(a) \left[p'(a)/p(a)\right]^2$ полинома p(x) в точке a.
- Найдите новое приближение к корню $a' = a \Delta a$, где

$$\Delta a = \frac{N}{L_1 + (L_1/|L_1|)\sqrt{(N-1)|NL_2 + L_1^2|}},$$

здесь N — степень полинома.

• Повторите все те же действия для нового приближения a = a'.

Итерация обрывается, если: либо p(a)=0, либо $|\Delta a|<10^{-13}$, либо точность 10^{-13} не достигнута после 30 оборотов.

Чтобы найти второй корень, выполняется деление полинома на (x-a): $p_1(x)=p(x)/(x-a)$ и тем же самым способом ищется корень полученного полинома 13-й степени $p_1(x)$. И так далее, пока не будут найдены все 14 корней.

 $^{^{16}{}m Bx}$ одные данные должны быть зачитаны из входного файла, а не быть куском программы.

 $^{^{17}}$ Вообще-то его целесообразно применять для отыскания **комплексных** корней полиномов.

¹⁸Перед тем, как на что-то делить, убедитесь, что это не ноль.

Написать программу для нахождения всех корней полинома

$$p(x) = \sum_{n=0}^{14} c_n x^n$$

методом Лягерра. Коэффициенты c_n заданы во входном файле $ct191v7.dat^{19}$ в порядке $c_0, c_1, \dots c_{14}$. Метод Лягерра²⁰ состоит в следующем:

- Возьмите начальное приближение к корню a = 0.
- Найдите 1-ю и 2-ю логарифмические производные²¹: $L_1 = p'(a)/p(a)$ и $L_2 = p''(a)/p(a) \left[p'(a)/p(a)\right]^2$ полинома p(x) в точке a.
- Найдите новое приближение к корню $a' = a \Delta a$, где

$$\Delta a = \frac{N}{L_1 + (L_1/|L_1|)\sqrt{(N-1)|NL_2 + L_1^2|}},$$

здесь N — степень полинома.

• Повторите все те же действия для нового приближения a = a'.

Итерация обрывается, если: либо p(a)=0, либо $|\Delta a|<10^{-13}$, либо точность 10^{-13} не достигнута после 30 оборотов.

Чтобы найти второй корень, выполняется деление полинома на (x-a): $p_1(x)=p(x)/(x-a)$ и тем же самым способом ищется корень полученного полинома 13-й степени $p_1(x)$. И так далее, пока не будут найдены все 14 корней.

¹⁹Входные данные должны быть зачитаны из входного файла, а не быть куском программы.

 $^{^{20} \}mbox{Вообще-то}$ его целесообразно применять для отыскания **комплексных** корней полиномов.

 $^{^{21}}$ Перед тем, как на что-то делить, убедитесь, что это не ноль.

Написать программу для нахождения всех корней полинома

$$p(x) = \sum_{n=0}^{14} c_n x^n$$

методом Лягерра. Коэффициенты c_n заданы во входном файле ct191v8.dat²² в порядке $c_0, c_1, \dots c_{14}$. Метод Лягерра²³ состоит в следующем:

- Возьмите начальное приближение к корню a = 0.
- Найдите 1-ю и 2-ю логарифмические производные²⁴: $L_1 = p'(a)/p(a)$ и $L_2 = p''(a)/p(a) \left[p'(a)/p(a)\right]^2$ полинома p(x) в точке a.
- Найдите новое приближение к корню $a' = a \Delta a$, где

$$\Delta a = \frac{N}{L_1 + (L_1/|L_1|)\sqrt{(N-1)|NL_2 + L_1^2|}},$$

здесь N — степень полинома.

• Повторите все те же действия для нового приближения a = a'.

Итерация обрывается, если: либо p(a) = 0, либо $|\Delta a| < 10^{-13}$, либо точность 10^{-13} не достигнута после 30 оборотов.

Чтобы найти второй корень, выполняется деление полинома на (x-a): $p_1(x)=p(x)/(x-a)$ и тем же самым способом ищется корень полученного полинома 13-й степени $p_1(x)$. И так далее, пока не будут найдены все 14 корней.

 $^{^{22}}$ Входные данные должны быть зачитаны из входного файла, а не быть куском программы.

 $^{^{23}}$ Вообще-то его целесообразно применять для отыскания **комплексных** корней полиномов.

 $^{^{24}\}Pi$ еред тем, как на что-то делить, убедитесь, что это не ноль.

Написать программу для нахождения всех корней полинома

$$p(x) = \sum_{n=0}^{14} c_n x^n$$

методом Лягерра. Коэффициенты c_n заданы во входном файле ct191v9.dat²⁵ в порядке $c_0, c_1, \dots c_{14}$. Метод Лягерра²⁶ состоит в следующем:

- Возьмите начальное приближение к корню a = 0.
- Найдите 1-ю и 2-ю логарифмические производные²⁷: $L_1 = p'(a)/p(a)$ и $L_2 = p''(a)/p(a) \left[p'(a)/p(a)\right]^2$ полинома p(x) в точке a.
- Найдите новое приближение к корню $a' = a \Delta a$, где

$$\Delta a = \frac{N}{L_1 + (L_1/|L_1|)\sqrt{(N-1)|NL_2 + L_1^2|}},$$

здесь N — степень полинома.

• Повторите все те же действия для нового приближения a = a'.

Итерация обрывается, если: либо p(a) = 0, либо $|\Delta a| < 10^{-13}$, либо точность 10^{-13} не достигнута после 30 оборотов.

Чтобы найти второй корень, выполняется деление полинома на (x-a): $p_1(x)=p(x)/(x-a)$ и тем же самым способом ищется корень полученного полинома 13-й степени $p_1(x)$. И так далее, пока не будут найдены все 14 корней.

²⁵Входные данные должны быть зачитаны из входного файла, а не быть куском программы.

 $^{^{26}}$ Вообще-то его целесообразно применять для отыскания **комплексных** корней полиномов.

 $^{^{27}}$ Перед тем, как на что-то делить, убедитесь, что это не ноль.

Написать программу для нахождения всех корней полинома

$$p(x) = \sum_{n=0}^{14} c_n x^n$$

методом Лягерра. Коэффициенты c_n заданы во входном файле ${\tt ct191v10.dat}^{28}$ в порядке $c_0, c_1, \ldots c_{14}$. Метод Лягерра 29 состоит в следующем:

- Возьмите начальное приближение к корню a = 0.
- Найдите 1-ю и 2-ю логарифмические производные 30 : $L_1=p'(a)/p(a)$ и $L_2=p''(a)/p(a)-\left[p'(a)/p(a)\right]^2$ полинома p(x) в точке a.
- Найдите новое приближение к корню $a' = a \Delta a$, где

$$\Delta a = \frac{N}{L_1 + (L_1/|L_1|)\sqrt{(N-1)|NL_2 + L_1^2|}},$$

здесь N — степень полинома.

• Повторите все те же действия для нового приближения a = a'.

Итерация обрывается, если: либо p(a)=0, либо $|\Delta a|<10^{-13}$, либо точность 10^{-13} не достигнута после 30 оборотов.

Чтобы найти второй корень, выполняется деление полинома на (x-a): $p_1(x)=p(x)/(x-a)$ и тем же самым способом ищется корень полученного полинома 13-й степени $p_1(x)$. И так далее, пока не будут найдены все 14 корней.

 $^{^{28}}$ Входные данные должны быть зачитаны из входного файла, а не быть куском программы.

 $^{^{29}}$ Вообще-то его целесообразно применять для отыскания **комплексных** корней полиномов.

 $^{^{30}\}Pi$ еред тем, как на что-то делить, убедитесь, что это не ноль.