УДК 538.221

ИССЛЕДОВАНИЕ МАГНИТНОЙ АНИЗОТРОПИИ ТИПА «ЛЕГКАЯ ПЛОСКОСТЬ» И РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ В ЭПИТАКСИАЛЬНЫХ ПЛЕНКАХ ФЕРРИТ-ГРАНАТОВ С ОРИЕНТАЦИЕЙ (100)

Е. Н. Ильичева, Ю. А. Дурасова, Е. И. Ильяшенко, А. В. Матюнин, В. В. Рандошкин

(кафедра общей физики)

E-mail: randoshkin_v_v@hotbox.ru

Исследованы монокристаллические пленки (Bi,Lu)₃ (Fe,Ga)₅O₁₂ и (Bi,Tm)₃ (Fe,Ga)₅O₁₂ с анизотропией типа «легкая плоскость», выращенные методом жидкофазной эпитаксии из переохлажденного раствора-расплава на подложках Gd₃Ga₅O₁₂ с ориентацией (100). Обнаружено наличие двухосной магнитной анизотропии в плоскости пленки с осями, совпадающими с кристаллографическими направлениями [110] и [100]. Определены углы отклонения «легкой плоскости» от плоскости пленки.

В настоящее время открываются интересные возможности применения Ві-содержащих монокристаллических пленок ферритов-гранатов (Вс-МПФГ) с анизотропией типа «легкая плоскость». Удачное сочетание гигантского фарадеевского вращения и относительно малой намагниченности насыщения ($4\pi M_s \sim 200$ Гс) в таких пленках позволяет с их помощью решать целый ряд практических задач интегральной оптики, использовать их для визуализации полей рассеяния магнитных носителей информации и сверхпроводников, диагностики дефектов в металлических средах [1–3].

Вс-МПФГ составов (Bi,Lu)₃ (Fe,Ga)₅O₁₂ и (Bi,Tm)₃ (Fe,Ga)₅O₁₂ были выращены методом жидкофазной эпитаксии из переохлажденного раствора-расплава на подложках Gd₃ Ga₅O₁₂ с ориентацией (100). В процессе эпитаксиального роста в пленке формируется индуцированная ростовая магнитная анизотропия, причем константа одноосной анизотропии K_u отрицательна. В этом случае вектор намагниченности M_s имеет планарную ориентацию и изотропное распределение в плоскости пленки. Под воздействием поля H_z , перпендикулярного плоскости пленки, угол β между M_s и полем H_z меняется по закону

$$\cos\beta = \frac{H_z}{H_K},$$

где $H_K = 2K_u/M_s$ — поле одноосной магнитной анизотропии. Угол поворота плоскости поляризации Φ линейно растет с увеличением значения H_z вплоть до значения $\Phi = \Phi_s$ при $H_z = H_K$. В ранее выполненной работе [4] было установлено, что исследуемые пленки действительно имеют достаточно протяженный линейный участок на кривой $\Phi(H_z)$. Для решения многих вопросов практического применения исследуемых пленок, а также понимания особенностей динамического поведения намагниченности в них необходимо более подробное изучение магнитной анизотропии в плоскости пленки и ее влияния на ориентацию векторов намагниченности, влияния плоскостных магнитных полей H_x и H_y на чувствительность пленки к воздействию внешнего поля H_z .

Исследованию этих проблем и посвящена настоящая работа.

Эксперимент

Методика исследования основана на магнитооптическом эффекте Фарадея. Комплекс измерительной аппаратуры позволял проводить наблюдение доменной структуры, регистрировать петли гистерезиса на экране осциллографа и снимать кривую намагничивания $M_z(H_z)$.

Процессы квазистатического намагничивания и перемагничивания были исследованы на магнитооптической установке, состоящей из Не-Ne лазера, электромеханического модулятора света, анализатора и поляризатора, намагничивающих устройств, которые создают однородные в объеме образца магнитные поля H_z , H_x и H_y , и фотодетектора [5]. Образец мог вращаться в плоскости, перпендикулярной полю Hz. Азимутальный угол поворота φ отсчитывался по лимбу, жестко связанному с перемагничивающим устройством. Начало отсчета совпадало с одним из направлений осей [110]. При снятии кривых намагничивания $M_z(H_z)$ в больших полях (до 4.5 кЭ) использовался электромагнит с продольным каналом для прохождения лазерного луча. Для создания относительно слабых полей (до 200 Э) применяли две ортогональные пары катушек Гельмгольца, создающие нормальное H_z и планарное H_x магнитные поля. Пленка вместе с перемагничивающим устройством могла вращаться вокруг вертикальной оси; при этом нормаль к пленке, оставаясь в горизонтальной плоскости, образовывала угол ψ с волновым вектором k. Угол поворота анализатора отсчитывался с точностью до 0.1°, а степень гашения света парой анализатор-поляризатор составляет 3×10^5 .

Доменную структуру наблюдали с помощью поляризационного микроскопа. Для повышения контраста доменной структуры использовали конденсор косого освещения [6].

Параметры некоторых из исследованных пленок приведены в таблице, где h — толщина пленки, θ_0 — угол выхода векторов намагниченности из плоскости пленки, $\alpha = \Phi_l/\Phi_s$, где Φ_l — угол фарадеевского вращения в конце линейного участка кривой $\Phi(H_z)$.

Параметры	Βс-ΜΠΦΓ	$(\mathbf{Bi},\mathbf{R})_3$	(Fe,Ga	$)_{5}O_{12}$
с	ориентаци	ей (100)	

Образец №	R	<i>h</i> , мкм	$\Phi_s,$ град	$ heta_0,$ град	H_K, \mathfrak{E}	α
1	Lu	1.0	1.0	_	500	1.0
2	Lu	4.0	4.8	4.67	580	0.75
3	Lu	1.8	1.5	3.17	430	0.99
4	Lu	3.9	4.0	1.3	500	0.90
5	Lu	2.3	2.25	1.3	440	0.80
6	Lu	2.0	2.0	1	700	0.75
7	Lu	6.0	6.0	1.77	820	0.83
8	Tm	4.8	4.6	2.83	700	0.60
9	Tm	4.0	3.6	7.0	630	0.70
10	Tm, Lu	3.0	2.8	4.5	400	0.60
11	Tm	4.2	4.1	5.1	600	0.60

Доменная структура

Доменная структура, наблюдаемая в состоянии остаточной намагниченности, имеет слабый контраст и представляет собой макродомены, разделенные прямыми доменными стенками (ДС) с углами между ними 90 и 135° (рис. 1). Направления ДС соответствуют направлениям кристаллографических осей [100] и [110] в кубическом кристалле. Для рассматриваемого случая отрицательной константы кубической анизотропии ($K_1 < 0$) направление [110] соответствует промежуточной оси легкого намагничивания (ОЛН), а направление [100] — оси трудного намагничивания (ОТН). 180-градусные ДС направлены вдоль ОЛН, а 90-градусные — вдоль ОТН.

Слабый контраст доменной структуры указывает на то, что вектор M_s ориентирован близко к плоскости пленки, отклоняясь от нее на небольшой угол θ_0 . Наиболее вероятное пространственное

Рис. 1. Доменная структура (а) и распределение компоненты M_x вектора намагниченности (б) для образца № 9

Рис. 2. Пространственная ориентация вектора намагниченности **М**_s для исследованных пленок

распределение векторов намагниченности, вытекающее из условия замыкания магнитного потока, для исследуемых пленок представлено на рис. 2. По обе стороны ДС, параллельной оси типа [110], компоненты M_x вектора намагниченности противоположны по знаку, а компоненты M_z не изменяются. Отсюда следует, что ДС, направленные вдоль ОЛН, являются (180 – 2 θ_0)-градусными. По обе стороны ДС, параллельной оси типа [100], компоненты M_z вектора намагниченности противоложны по знаку, а угол между компонентами M_x равен 90°.

Петли гистерезиса

Наличие магнитной анизотропии типа «легкая плоскость» проявляется также на поперечных петлях гистерезиса $M_z(H_x, \varphi)$. Характерной особенностью этих петель является многообразие их форм при изменении угла φ . При некоторых характерных углах φ на экране осциллографа появлялась горизонтальная линия с однополярными сигналами перемагничивания (рис. 3, *a*). Эта горизонтальная линия соответствует состоянию насыщения полем H_x ,

Рис. 3. Поперечные петли гистерезиса $M_z(H_x)$ для образца № 8 при амплитуде переменного поля $H_x = 7.5$ Э и разных азимутальных углах $\varphi: 0$ (*a*); $+2^\circ$ (*b*) и -2° (*b*)

а точки 1 и 2 — переходу через размагниченное состояние. Направления, которым соответствует рис. 3, *a*, повторяются примерно через 90°, и согласно рис. 2 их можно отождествить с направлениями ОЛН, т.е. с осями типа [110]. Если бы перемагничивание происходило смещением только 180-градусных ДС, то на экране наблюдалась бы горизонтальная линия. Наблюдаемый сигнал (рис. 3, *a*, точки 1 и 2) обусловлен смещением 90-градусных ДС, которые имеются в клиновидных доменах, возникающих в процессе перемагничивания.

При малом отклонении от ОЛН ($\pm 2^{\circ}$) (рис. 3, *б*, *в*) петля гистерезиса становится биполярной и меняет фазу при переходе через $\varphi = 0$. Столь резкое изменение формы петли гистерезиса позволяет легко определить ориентацию ОЛН с точностью $\pm 1^{\circ}$.

При углах φ , близких к 45°, петля гистерезиса является прямоугольной. Переход через размагниченное состояние происходит в отрицательном поле коэрцитивной силы H_x одним или несколькими скачками. Перемагничивание осуществляется в основном смещением 90-градусных ДС, параллельных кристаллографическим направлениям [100].

Наблюдаемая в остаточном состоянии доменная структура, а также петли гистерезиса $M_z(H_x, \varphi)$ указывают на то, что в плоскости пленки существует двухосная анизотропия, характерная для плоскости (100) кубического кристалла.

Заметим при этом, что для наблюдения петли гистерезиса $M_z(H_x)$ очень важно, чтобы нормаль к пленке (ось z) была ориентирована строго по лазерному лучу ($\psi = 0$). При $\psi \neq 0$ основной вклад в фарадеевский сигнал будет давать большая плоскостная компонента M_x .

При перемагничивании пленки в присутствии постоянного магнитного поля $H_z \ll H_K$ петли гистерезиса $M_z(H_x)$ сдвигаются по полю H_x без изменения амплитуды петли и ее формы в ту или иную сторону в зависимости от направления поля H_z . Исключение представляет случай перемагничивания вдоль ОЛН ($\varphi = 0$), когда форма петли гистерезиса меняется. При этом малые неустойчивые сигналы перемагничивания (рис. 4, *a*, точки 1 и 2) преобразуются в две прямоугольные однополярные петли гистерезиса (рис. 4, *б*, *г*), а сами петли смещаются

Рис. 4. Поперечные петли гистерезиса M_z(H_x) для образца № 8 при амплитуде переменного поля H_x = 7.5 Э и азимутальном угле φ = 0 при различных значениях постоянного магнитного поля H_z: 0 (a), +60 (б), +70 (в), -60 (г) и -70 Э (д). Цифрами показана последовательность изменения сигнала перемагничивания

по полю H_x . Первая ветвь (1-2-7-8) и вторая ветвь (5-6-3-4) прямоугольных петель разделены горизонтальной ступенькой, которая соответствует размагниченному состоянию образца. Каждому значению поля H_z соответствует поле $H_x(0)$, при котором процесс перехода из размагниченного в состояние насыщения еще не происходит; вторая ветвь 3-4-5-6 на рис. $4, e, \partial$ в отличие от рис. 4, f, eотсутствует. Другими словами, перемагничивание происходит по частному циклу.

Критические кривые перемагничивания

Наблюдение доменной структуры показывает, что малое поле $H_z \ll H_K$ вызывает смещение ДС, при этом контраст не меняется, т.е. вращения вектора \boldsymbol{M}_s не происходит. Петля гистерезиса $M_z(H_x)$ под воздействием поля H_z смещается по полю H_x , при этом форма петли остается неизменной. Это важное обстоятельство связано с движением ДС и отсутствием вращения вектора \boldsymbol{M}_s в доменах.

В нашем случае вектор M_s ориентирован в плоскости (x, z) так, что

$$M_x = M_s \cos \theta_0$$
, $M_u = 0$, $M_z = M_s \sin \theta_0$.

Изменение компонент намагниченности определяется тензором восприимчивости процесса смещения доменных стенок

$$\chi_d = egin{pmatrix} \chi_{11} & 0 & \chi_{13} \ 0 & 0 & 0 \ \chi_{31} & 0 & \chi_{33} \end{pmatrix},$$

поскольку восприимчивость процесса вращения вектора намагниченности

$$\chi_r = 4\pi \frac{M_s}{H_K} \approx 0.1 \div 0.2$$

значительно меньше. Здесь $i_{ij} = \partial M_i / \partial H_j$, $\chi_{11} = \chi_{xx}$, $\chi_{13} = \chi_{xz}$, $\chi_{31} = \chi_{zx}$, $\chi_{33} = \chi_{zz}$.

Тогда изменения компонент намагниченности составляют:

$$\Delta M_z = \chi_{zx} H_x + \chi_{zz} H_z, \tag{1}$$

$$\Delta M_x = \chi_{xx} H_x + \chi_{xz} H_z. \tag{2}$$

Путем несложных преобразований из (1) и (2) получаем, что

$$\chi_{zz} = \chi_{zx} \operatorname{tg} \theta_0. \tag{3}$$

Легко измеряемой характеристикой сдвига петли гистерезиса является критическое поле $H_x(0) = f(H_z)$ и $H_z(0) = f(H_x)$ перехода намагниченности через нуль (размагниченное состояние), $\Delta M_z = 0$. Из (1) и (3) получаем

$$\Delta M_{z} = \chi_{zx} H_{x} + \chi_{zz} H_{z} = \chi_{zz} \left[H_{z}(0) + \frac{H_{x}(0)}{\operatorname{tg} \theta_{0}} \right] = 0,$$
(4)

так что

$$|\operatorname{tg} \theta_0| = \frac{H_x(0)}{H_z(0)}.$$
 (5)

Критические кривые для двух образцов приведены на рис. 5 и 6. Видно, что на каждом рисунке все прямые имеют практически одинаковый наклон. Рассчитанные по критическим кривым значения угла θ_0 составляют 1.77° ± 0.12° для образца № 7 и 2.83° ± 0.12° для образца № 8. В предположении, что вектор M_s лежит в «легкой плоскости», угол θ_0 можно рассматривать как угол отклонения «легкой плоскости» от плоскости пленки. Значения θ_0 для всех исследованных образцов даны в таблице.

Необходимо отметить, что на образцах № 2 и № 3 (см. таблицу) были проведены исследования переходных процессов, вызываемых магнитными полями, параллельными плоскости пленки [7]. Оказалось, что характер этих процессов зависит от направления плоскостных полей. В данных экспериментах были выявлены два направления ОЛН и ОТН, которые с достаточной точностью совпадают с направлениями, определенными магнитооптическим методом в настоящей работе.

Изучение частотной зависимости свободных колебаний, возбуждаемых импульсом плоскостного поля от напряженности постоянного поля [8], позволило найти в этих же пленках поле анизотропии в плоскости пленки, которое оказалось равным (40.0 ± 0.4) Э.

Рис. 5. Критические кривые $H_x(0) = f(H_z)$ перехода через размагниченное состояние при азимутальном угле $\varphi = 45^\circ$ (кривые 1 и 2) и критическая кривая $H_x(0) = f(H_z)$ зарождения второй ветви петли гистерезиса при азимутальном угле $\varphi = 0$ (кривая 3) для образца № 7

Рис. 6. Критические кривые $H_x(0) = f(H_z)$ перехода через размагниченное состояние при $\varphi = +20^{\circ}$ (кривые 1 и 2) и $\varphi = -20^{\circ}$ (кривые 3 и 4) и критическая кривая $H_x(0) = f(H_z)$ зарождения второй ветви петли гистерезиса (кривая 5) для образца № 8. Показана форма петель гистерезиса и точки 1-4, положение которых отслеживали при варьировании постоянного магнитного поля H

варьировании постоянного магнитного поля H_z

Выводы

Проведенные исследования Lu- и Tm-содержащих эпитаксиальных Вс-МПФГ с ориентацией (100) показали следующее.

1. Вектор намагниченности M_s отклоняется от плоскости пленки на малый угол θ_0 , а доменные

стенки, параллельные оси типа [110], являются $(180 - 2\theta_0)$ -градусными.

2. Предложены достаточно точные методы (не хуже $\pm 1^{\circ}$) определения ориентации ОЛН в плоскости пленки и угла θ_0 .

3. Зависимости критических полей $H_x(0) = f(H_z)$ перехода через размагниченное состояние являются линейными с тангенсом угла наклона

$$\operatorname{tg} \theta_0 = \frac{M_z}{M_x} = \frac{H_x(0)}{H_z(0)}.$$

4. Обнаружено, что угол θ_0 отклонения «легкой плоскости» от плоскости пленки лежит в пределах $1.5^\circ \div 5.0^\circ$.

Авторы выражают искреннюю благодарность О.С. Колотову за обсуждение результатов работы и ценные замечания.

Литература

 Antonov A. V., Gusev M.U., Il'yashenko E.I. et al. // Digests of Int. Symp. on Magnetooptics (ISMO-91). Kharkov (USSR), 1991. P. 70.

- Klank M., Hagedorn O., Shamonin M. et al. // J. Appl. Phys. 2002. 92, N 11. P. 6484.
- 3. Рандошкин В.В., Гусев М.Ю., Козлов Ю.Ф., Неустроев Н.С. // ЖТФ. 2002. **70**, № 8. С. 19.
- 4. Дурасова Ю.А., Ильичева Е.Н., Клушина А.В. и др. // Заводская лаборатория. Диагностика материалов. 2001. **67**, № 7. С. 27.
- Goa E., Hauglin H., Baziljevich M. et al. // Supercond. Sci. Techn. 2001. 14. P. 729.
- Il'iycheva E.N., Il'yashenko E.I., Nyenhuis J.A. et al. // MMM Conference, Miami, Florida, USA, November 1998. Paper DU-03.
- Дурасова Ю.А., Ильичева Е.Н., Ильяшенко Е.И. и др. // Сб. тр. XVIII междунар. школы-семинара «Новые магнитные материалы микроэлектроники». М., 2002. С. 477.
- 8. Ильичева Е.Н., Ильяшенко Е.И., Колотов О.С. и др. // ФТТ. 2002. **45**, № 6. С. 1037.

Поступила в редакцию 07.07.05