УДК 539.172:539.2:548.3

МЁССБАУЭРОВСКИЕ ИССЛЕДОВАНИЯ ВЕЗУВИАНОВ

В. С. Русаков, Р. В. Ковальчук^{*)}, Е. Ю. Боровикова^{*)}, В. С. Куражковская

(кафедра общей физики)

E-mail: rusakov@phys.msu.ru

Представлены результаты исследования коллекции образцов везувианов с помощью методов мёссбауэровской спектроскопии на ядрах ⁵⁷ Fe. Проведен сравнительный анализ функций распределения положения одиночной резонансной линии. Выявлены парциальные мёссбауэровские спектры, относящиеся к атомам железа, находящимся в существенно различных валентных и структурных состояниях. Определены характерные значения сверхтонких параметров и валентное состояние атомов железа.

Везувиан является сложным по своему химическому составу и кристаллической структуре природным минералом. Общая схематическая формула везувиана — $X_{19}Y_{13}Z_{18}T_{0-5}O_{68}W_{10}$, где X — Са и другие крупные катионы, заполняющие позиции с координационным числом, равным 8; Ү - катионы, заполняющие октаэдрические и пятикоординированные позиции: Al, Mg, Fe, Ti и т.д.; Z — Si в тетраэдрах; Т — В, □; W — О, ОН, F [1]. До настоящего времени не решен вопрос о валентном и структурном состояниях некоторых из основных компонентов везувиана, в частности атомов железа. Решение этого вопроса позволит дополнить информацию, необходимую для изучения физико-химических условий процессов минералообразования, а также механизмов изоморфных замещений, о которых на данный момент нет устоявшегося мнения.

Дважды предпринимались попытки исследования везувианов с помощью методов мёссбауэровской спектроскопии на ядрах ⁵⁷ Fe в 1975–1981 [2–5] и в 1996–2003 гг. [6–7]. Однако малая выборка образцов, сложность спектров и использование при этом традиционных методов обработки не позволили авторам прийти к единой их интерпретации.

В наши исследования были вовлечены 17 образцов везувианов из различных месторождений с широкими вариациями химического состава (табл. 1). Помимо основных элементов, приведенных в таблице, в ряде образцов обнаружены следы Cr, Ce, Zn и Cu.

Все изученные образцы везувианов по условиям образования являются высокосимметричными и разупорядоченными [8]. Набор основных элементов в образцах постоянен, от образца к образцу изменяется только их концентрация. В связи с этим разумно предположить некоторую устойчивость в структуре экспериментальных мёссбауэровских спектров, которая будет проявляться в наличии практически одинаковых парциальных спектров и устойчивости значений их сверхтонких параметров.

Эксперимент проводился при комнатной температуре на спектрометре MC1101Э в геометрии поглощения в режиме постоянных ускорений с пилообразной формой временной зависимости доплеровской скорости. В исследованиях использовался источник ⁵⁷Со в матрице Rh активностью ~5 мКи. Калибровка мёссбауэровского спектрометра осуществлялась с помощью эталонного образца α -Fe. Экспериментальные мёссбауэровские спектры

Таблица 1

Химический состав исследованных образцов везувианов, нормированный на 18 атомов Si

Nº	Mg	Al	Fe	Ti	Mn	Са	Na	В	F	Cl
1	0.68	9.04	2.56	0.62	0.03	18.59	0.14	0.37	3.16	0.13
2	0.70	9.00	2.45	0.64	0.10	18.77	0.18	—	3.04	0.11
3	0.88	9.43	2.20	0.43	0.12	19.20	0.08	0.70	3.03	0.06
4	1.02	9.56	1.94	0.63	0.03	18.74	0.12		3.52	0.04
5	1.08	9.36	1.98	0.58	0.05	19.07	0.08	0.32	3.63	0.09
6	1.24	8.41	1.94	0.96	0.08	18.81	0.09		2.18	0.16
7	1.28	8.87	1.72	0.44	0.12	19.07	0.05		2.94	0.13
8	1.48	8.59	2.26	0.27	0.12	18.99	0.10	0.30	2.29	0.20
9	1.59	9.72	1.20	0.11	0.05	19.25	0.06	—	2.75	0.08
10*	—	—	—	_	—	_	—	—	_	—
11	2.04	8.95	1.43	0.53	0.13	19.43	0.03	_	1.75	0.03
12	2.18	8.35	1.85	0.20	0.28	19.19	0.01	—	1.60	0.03
13	2.36	8.29	1.87	0.19	0.21	18.95	0.10	0.66	2.08	0.06
14	2.43	8.18	2.04	0.15	0.26	19.11	0.03	—	2.40	0.07
15	2.59	8.17	2.08	0.01	0.10	19.09	0.02	1.01	3.52	0.23
16	3.29	8.30	1.51	0.37	0.02	19.20	0.02	2.23	1.13	0.01
17	3.53	8.12	1.59	0.48	0.02	19.23	0.04	2.15	1.20	0.03

* Данных о химическом составе нет.

*) Кафедра кристаллографии и кристаллохимии геологического факультета МГУ им. М. В. Ломоносова.

обрабатывались методом восстановления функции распределения сверхтонких параметров с помощью программы DISTRI из программного комплекса MSTools [9]. Качество Q большинства полученных мёссбауэровских спектров везувианов, вычисляемое как отношение максимальной видимой величины эффекта $N_{\infty} - N_{\min}$ к стандартному отклонению $S_{N_{\infty}}$ статистических ошибок, $Q \equiv (N_{\infty} - N_{\min})/S_{N_{\infty}}$, было больше 50. Здесь N_{\min} и N_{∞} — минимальная интенсивность счета γ -квантов в спектре и интенсивность счета в отсутствие резонанса.

Экспериментальные мёссбауэровские спектры образцов везувианов представляли собой спектры парамагнитного типа в виде суперпозиции большого числа плохо разрешенных квадрупольных дублетов. На рис. 1 приведены характерные мёссбауэровские спектры исследованных образцов. Для первой группы спектров, соответствующих образцам № 1-6 с низким содержанием атомов Mg (см. табл. 1), судя по наличию интенсивных линий на краях спектров, характерно высокое содержание двухва-

Рис. 1. Характерные экспериментальные мёссбауэровские спектры образцов везувианов (№ 3, 7 и 12). Огибающая спектров соответствует результату восстановления функции распределения положения одиночной резонансной линии p(v). В нижней части каждого из фрагментов рисунка представлена разность между экспериментальным спектром и огибающей

лентных ионов железа. Вторая группа спектров отвечает образцам № 7-9 с более высоким содержанием атомов магния (табл. 1), образец № 10, для которого элементный состав не определялся, судя по виду спектра, также можно отнести к этой группе. Третью группу спектров составляют спектры образцов № 11-17, в которых содержание атомов Mg более чем в два раза превышает содержание Mg в образцах, спектры которых отнесены к первой группе (табл. 1). Мёссбауэровские спектры образцов этой группы состоят в основном из парциальных спектров трехвалентных ионов железа, о чем можно судить по наличию интенсивных линий в центральной части спектра.

Учитывая сложность полученных экспериментальных спектров, с целью повышения разрешения нами было осуществлено восстановление функции распределения положения p(v) одиночной резонансной линии (рис. 2, 3) [9]. На основе сравнительного анализа результатов восстановления функции распределения *p*(*v*) для спектров всех исследованных образцов нам удалось выявить парциальные спектры, соответствующие различным валентным и структурным состояниям атомов железа в везувианах. При этом резонансные линии экспериментальных мёссбауэровских спектров, интенсивности которых изменяются синхронно от образца к образцу, т.е. уменьшаются или увеличиваются одновременно, были объединены нами в квадрупольные дублеты.

Рассмотрим экспериментальные спектры образцов \mathbb{N} 1–10 из первой и второй групп (см. рис. 2). Сравнивая эти спектры, видим, что одинаково синхронно изменяются интенсивности резонансных линий в области значений скоростей ~ -0.5 и ~ 3 мм/с. Особенно хорошо это видно на примере спектра образца \mathbb{N} 10 (рис. 2), где эти линии более интенсивные, чем в остальных спектрах. В спектрах третьей группы этот квадрупольный дублет (дублет *а*) малоинтенсивен и несколько смещен либо вообще отсутствует (рис. 3).

Четко выраженные и достаточно интенсивные резонансные линии в области скоростей ~ -0.2 и ~ 2.5 мм/с (спектры образцов № 1-5) образуют второй квадрупольный дублет (дублет b). В спектрах последовательности образцов № 5-9 наблюдается одновременное уменьшение интенсивностей этих резонансных линий, а в спектре образца № 10 их интенсивность минимальна (рис. 2). Экспериментальные спектры второй группы также содержат этот парциальный спектр, при этом интенсивность его невелика и правая резонансная линия выражена четче, чем левая (рис. 3).

В спектрах образцов № 2 и № 6 появляется резонансная линия, практически не наблюдаемая ни в оставшихся спектрах первой группы, ни в спектрах второй группы (рис. 2). Это резонансная линия

Рис. 2. Результат восстановления функции распределения положения одиночной резонансной линии *p*(*v*) для образцов везувианов № 1–10

в области скоростей ~ 2.2 мм/с. Одновременно с появлением этой резонансной линии можно отметить увеличение интенсивности резонансной линии в области скоростей ~ 0.1 мм/с. Во всех остальных спектрах первой группы резонансная линия при $v \sim 0.1$ мм/с существенно менее интенсивная. Указанные линии образуют квадрупольный дублет f.

В спектрах образцов с преимущественно интенсивной центральной частью (№ 11-17) четко выражен квадрупольный дублет, образованный резонансными линиями в области скоростей 0.1 ÷ 0.2 и 0.6 ÷ 0.7 мм/с (рис. 3). Этот парциальный спектр (дублет *c*) хорошо проявляется в спектрах всех образцов, но наиболее явно выражен в спектрах

Рис. 3. Результат восстановления функции распределения положения одиночной резонансной линии *p*(*v*) для образцов везувианов № 11–17

образов № 12–14. В спектрах первой и второй групп также наблюдается данный квадрупольный дублет.

По интенсивностям линий дублета *с* видно, что в ряде случаев в области расположения его правой линии находится еще одна резонансная линия. Сравнивая спектры образцов № 1–10, приходим к выводу, что пару резонансной линии в области скоростей ~ 0.6 мм/с может составить только резонансная линия в интервале скоростей ~ $1 \div 1.2$ мм/с. Указанные резонансные линии образуют квадрупольный дублет *d*. При этом в спектрах образцов с высоким содержанием магния (образцы № 10–17) либо не содержится дублет *d*, либо этот дублет малоинтенсивен, либо спектры этих образцов содержат квадрупольный дублет с параметров дублета *d*.

Уширение линий спектров всех образцов в области скоростей $\sim 1.1 \div 1.4$ мм/с вызвано наличием двух резонансных линий в этой области. Одна из них является правой линией квадрупольного дублета d в спектрах первой и второй групп, а второй линии разумно сопоставить резонансную линию из области скоростей $\sim -0.4 \div -0.3$ мм/с. Обе эти линии образуют квадрупольный дублет e.

Итак, в результате сравнительного анализа функций распределения положения одиночной резонансной линии p(v) удалось установить, что экспериментальные мёссбауэровские спектры состоят из совокупности как минимум пяти существенно различных квадрупольных дублетов. При этом в спектрах двух образцов (\mathbb{N} 2 и \mathbb{N} 6) наблюдается дополнительный, шестой, дублет (дублет f) (табл. 2).

Положение резонансных линий парциальных

Таблица 2

Характерные значения скоростей, соответствующие левой (v₋) и правой (v₊) резонансной линии квадрупольных дублетов

UT MM/C	Квадрупольный дублет								
0+, mm/c	а	b	С	d	е	f			
<i>v</i> _	~ -0.5	~ -0.2	~ 0.15	~ 0.6	$\sim -0.4 \div -0.3$	~ 0.1			
v_+	~ 3	~ 2.5	~ 0.65	$\sim 1.0 \div 1.2$	$\sim 1.0 \div 1.2$	~ 2.2			

Таблица З

Значения сверхтонких параметров парциальных спектров ядер ⁵⁷Fe для исследованных образцов везувианов

	Номер квадрупольного дублета							
	а	b	С	d	е	f		
δ , мм/с	$1.2 \div 1.3$	$1.0 \div 1.2$	$0.3 \div 0.4$	$0.8 \div 0.9$	$0.3 \div 0.4$	$1.1 \div 1.2$		
ε, мм/с	~ 1.75	~ 1.35	$0.2 \div 0.3$	$0.25 \div 0.3$	$0.6 \div 0.8$	$1.0 \div 1.2$		

спектров слабо меняется от спектра к спектру. Отметим, что положение резонансных линий спектров *d* и *е* для групп образцов № 1–10 и № 11–17 заметно не совпадает (см. табл. 2).

Зная положение резонансных линий квадрупольного дублета на шкале доплеровских скоростей, можно установить значения его сверхтонких параметров. Это в свою очередь позволяет определить наличие ионов железа соответствующей валентности по парциальным мёссбауэровским спектрам. В табл. З представлены характерные значения сдвигов δ (относительно α -Fe) и квадрупольных смещений ε . В соответствии с данными работы [10] квадрупольные дублеты a, b, d и f можно отнести к парциальным спектрам ионов Fe²⁺, а дублеты c и e — парциальным спектрам трехвалентных ионов железа.

Таким образом, в результате сравнительного анализа функций распределения положения одиночных резонансных линий p(v) в экспериментальных мёссбауэровских спектрах нам удалось установить, что в спектрах образцов везувианов присутствуют парциальные спектры как ионов Fe^{2+} , так и Fe^{3+} . При этом ионы Fe^{2+} занимают в структуре везувианов три неэквивалентные в структурном отношении позиции, а ионы Fe^{3+} — две. Относительное содержание двух- и трехвалентных ионов железа коррелирует с относительным содержанием атомов магния: чем больше атомов магния, тем больше трех- и меньше двухвалентных ионов железа.

Литература

- 1. Groat L.A., Hawthorne F.C., Erict T.S. // Can. Mineral. 1992. **30**, № 1. P. 19.
- Manning P.G., Tricker M.J. // Can. Mineral. 1975. 13, p. 259.
- Tricker M.J., Manning P.G. // J. de Physique. 1979.
 40. P. C2-477.
- 4. Vaishnava P.P., Tricker M.J., Manning P.G. // Phys. Stat. Sol. (a). 1980. 62. P. K89.
- Tricker M.J., Manning P.G. // J. Inorg. Nucl. Chem. 1981. 43. P. 1169.
- 6. Karwowski L., Kraczka J., Pieczka A., Zabinski W. // Mineralogia Polonica. 1996. 27, № 2. P. 23.
- Kraczka J., Zabinski W. // Mineralogia Polonica. 2003.
 34, № 1. P. 37.
- 8. Куражковская В.С., Боровикова Е.Ю., Дорохова Г.И., Кононов О.В. // Записки ВМО. 2003. 1. С. 109.
- 9. Русаков В.С. Мёссбауэровская спектроскопия локально неоднородных систем. Алматы, 2000.
- 10. Menil F.J. // Phys. Chem. Sol. 1985. 46, № 7. P. 763.

Поступила в редакцию 13.09.05